- NEURAL NETWORK
REVIEW

Volume 4, Number 1, 1990

LAWRENCE ERLBAUM ASSOCIATES, PUBLISHERS
Hillsdale, New Jersey Hove and London

MA 02138.
References

Fahlman, S. (1988). Faster-learning variations on back-
propagation: An empirical study. Proceedings of the
1988 Connectionist Models Summer School (pp. 38-51).
San Mateo, CA: Morgan Kaufmann.

Harp, S., Samad, T., & Guha, A. (1989). Towards the
genetic synthesis of neural networks. Proceedings of
the Third International Conference on Genetic
Algorithms (pp. 360-369). San Mateo, CA: Morgan
Kaufmann. Fairfax, VA, June 4-7.

Mesard, W., & Davis, L., (1989). Backpropagation in a
genetic search environment. Poster presentation at
the conference on Neural Information Processing
Systems. Denver, CO, November 27-30.

Whitley, D., Starkweather, T., & Bogart, C. (in press).
Genetic algorithms and neural networks: Optimizing
connections and connectivity. Parallel Computing.

Genetic Neural Networks
Can Be Dynamic Too,
You Know!

Optimizing small neural networks using a distributed
genetic algorithm. Darrell Whitley and Timothy
Starkweather. Proceedings of the International Joint
Conference on Neural Networks, 1, 206-209. Hillsdale,
NJ: Lawrence Erlbaum Associates. Washington, DC,
January 15-19, 1990.

Reviewed by Hugo de Garis

Whitley and Starkweather’s paper is one of a growing-
number in a new branch of neural networks that uses
genetic algorithms to help design neural network
architectures. A recent bibliography (Rudnick, 1990) on
the genetic algorithm-neural network marriage has
nearly 80 references. The recent neural network
conference in Washington, DC in January, 1990 devoted
a whole session to the evolutionary aspect of neural nets.
Obviously, interest in genetic algorithms on the part of
neural network researchers is growing. Unfortunately,
since the branch is new, there is as yet no generally
accepted name either for neural networks evolved with
genetic algorithms, nor for the branch itself. Personally,
I label a neural network constructed by means of a
genetic algorithm a “GenNet,” and the new branch
(studying GenNets and how to put them together)
“genetic programming” (de Garis, 1990).

50

Having read Whitley & Starkweather’s paper several
times, my overall impression was, *“What’s an essentially
genetic algorithms paper doing in a neural network
conference proceedings?” The essence of their message
is that the parallelized version of their GENITOR
variation of the genetic algorithm works better than the
standard version (to be found in Goldberg, 1989, for
example). (I recommend Goldberg’s book as an
excellent and readable introduction to the principles of
genetic algorithms—the best in the literature.) Whitley
and Hanson wrote a longer (6-page instead of 4-page)
version of this paper for the Third International
Conference on Genetic Algorithms (Whitley & Hanson,
1989) which says much the same things. I suppose that
Whitley and Starkweather thought that if they applied
their improved genetic algorithm to a neural network
application (rather than to the usual, non-neural network
optimization problems) it might get accepted at a neural
network conference. Well, it did, but that doesn’t
change my opinion that their 4-page paper is a genetic
algorithms paper in disguise. (Publish or perish, right?!)
Still, it’s not a bad paper. It is well written, clear, and
reads easily. I had (I hope) no trouble with it (as a
genetic algorithms paper!). What they are saying is that
the standard genetic algorithm can be improved by
replacing the traditional approach to crossover (i.e.,
creating two progeny by swapping portions of two parent
chromosomes, which are destroyed in the process) by
allowing the two parents to continue to exist in the
population, and randomly choosing one of the two
(crossed) progeny and using it to replace the lowest
ranking chromosome in the population.

There is a second variation in the GENITOR
approach. Instead of parents reproducing the next
generation with a probability proportional to their fitness
(i.e., a measure of the quality of the “solution” to the
problem encoded in the chromosome, which is usually a
binary string), they do so in proportion to their rank.
Whitley & Starkweather make no mention of the usual
technique of scaling as a means to prevent premature
convergence. (Scaling is linearly transforming fitness
scores such that the best (transformed) value is a (user
specified) constant times larger than the average value.)
Scaling (and ranking) prevents early high fliers from
squeezing out other members of the population
prematurely. Whitley & Starkweather’s parallelized
version of GENITOR (i.e. GENITOR II) uses quasi-
isolated subpopulations, each with its own genetic
algorithm. Occasionally, each subpopulation sends its
best chromosome to another subpopulation (round
robin style). The justification for all of the above is to
retain genetic diversity in the whole population.

I was impressed by their results. They definitely got
better evolutionary speeds and higher quality solutions
than the traditional approach, and these results motivate
me to want to try their ideas in my own work. However,
their work raises two issues of importance. One involves

Neural Network Review

the usefulness of crossover. I use the genetic algorithm
to find the signs and weights of fully connected networks
(GenNets) such that their output behavior over time is
maximized. In practice, I find that crossover so lowers
the fitness values of chromosomes that I do not use it. I
make do with mutation and selection. Since it is likely
that many researchers will be getting into genetic
programming over the next year or so and that the
concept of crossover is fundamental to genetic algorithm
theorists, the issue as to whether crossover helps or
hinders the evolution of fully connected GenNets is one
which needs to be settled. I have already discussed this
issue with Ken DeJong of George Mason University in
Fairfax, Virginia, one of the leading genetic algorithm
experts, but so far, we do not agree.

A second issue is a global one that involves the whole
of the genetic programming community (as far as it
exists). If one goes to the trouble of creating a holy
alliance Dbetween genetic algorithms and neural
networks, why restrict oneself to neural network
applications which are boring old (static, feedforward)
vector mappings when one can just as easily employ
genetic algorithms on fully connected GenNets which
are dynamic, i.e., they behave over time? Genetic
algorithms are indifferent to what the fitness value
actually measures (whether it is the quality of a static
vector mapping or of a time-dependent output
behavior). To a genetic algorithm, the fitness (or
ranking) is merely a guide to reproductive probability.
By using a genetic algorithm on fully connected
GenNets, I have been able to evolve GenNet modules
with specific behaviors over time. For example, imagine
you wanted to evolve a GenNet output which oscillates
with a given amplitude and a period of 50 cycles. You let
the GenNet run for 50 cycles (with given initial
conditions) and measure the output at each cycle. The
fitness value might be the inverse of the sum of the
squares of the differences between the desired sinusoidal
value and the actual output value at each cycle. After a
few hundred generations (mutating the bits in the
chromosomes representing the signs and weights of the
connections) you will get an actual output curve which is
very close to the desired sinusoid.

Since my GenNets are fully connected, where each
connection can be either excitatory or inhibitory and can
take any weight value between (let us say) +1 and —1,
there is a huge number of degrees of freedom to play
with, especially over hundreds of cycles. The power of
genetic algorithms is that they can provide solutions to
problems which are too complex to analyze with other
neural network methods. If one can evolve one time-
dependent GenNet, one can evolve many of them, each
with its own specific behavior over time. For example, I
have evolved GenNets which are frequency generators,
frequency detectors, leg controllers, motion controllers,
antenna rotators, signal strength detectors, production
rule implementors, etc.—all with the aim of showing that

Vol. 4, No. 1

GenNets can be put together to build artificial nervous
systems. Building artificial nervous systems (brain
building) is a challenge far more worthy of the holy
genetic algorithm-neural network alliance than
constructing static vector mappings. A related challenge
will be to put these ideas into robotics, and thus we shall
probably see genetically programmed robots within one
to two years.

However, the future of genetic programming is even
more glorious. Within a human generation, future
technologies such as wafer scale integration, molecular
electronics, nanotechnology, and quantum computing
will provide the neural network community with
machines with millions, billions, and trillions of
processors. These processors will have to self-organize
(you can not program them all), but how do you know
they have self-organized “well”? What does well mean?
In the future, the only way to proceed may be by taking
the evolutionary path by putting populations of
computer architectures through a Darwinian “survival-
of-the-fittest” gauntlet. Genetic algorithms may be
implemented directly in hardware, thus creating the
concept of the Darwin Machine.

I would like to conclude by predicting that within two
years, no self-respecting neural network researcher will
dare divulge to his or her colleagues that he or she is still
ignorant of the basic principles of genetic algorithms. I
believe that the evolutionary approach not only will
become very important for neural networks, but will
probably become dominant, and not just for neural
networks, but for computer science as a whole. In this
light, it is a pity that the organizing committee for the
International Joint Conference on Neural Networks in
June, 1990 in San Diego decided in its wisdom (or
ignorance of genetic algorithms?) not to have a special
session on genetic programming at its summer
conference.

Hugo de Garis is at the CADEPS Al Research Unit,
University of Brussels, Universite Libre de Bruxelles, Ave
F.D. Roosevelt 50, C.P. 194/7, B-1050, Brussels, Belgium.

References

de Garis, H. (1990). Genetic programming: Modular
neural evolution for Darwin machines. Proceedings of
the International Joint Conference on Neural Networks,
I, 194-197. Hillsdale, NIJ: Lawrence Erlbaum
Associates. Washington, DC, January 15-19.
Goldberg, D. E. (1989) Genetic Algorithms in Search,
Optimization, and Machine Learning. Reading, MA:
Addison Wesley Publishing Co.

Rudnick, M. (1990). A bibliography of the intersection of
genetic search and artificial neural networks (Tech.
Rep. CS/E 90-001). Corvallis, OR: Oregon Graduate
Institute, Department of Computer Science and
Engineering.

51

Whitley, D., & Hanson, T. (1989). Optimizing neural
networks using faster, more accurate genetic search.
Proceedings of the Third International Conference on
Genetic Algorithms (pp. 391-:396) San Mateo, CA:
Morgan Kaufman. George Mason University, Fairfax,
VA, June 4-7.

The Author Responds

The review of my paper offers several criticisms that
I find hard to understand. First, there is similarity
between the paper published in the Proceedings of the
Third International Genetic Algorithm Conference
(Whitley & Hanson, 1989) and the paper published in
the Proceedings of the International Joint Conference on
Neural Networks (IJCNN), but there were also major
differences. In the earlier paper, we were not able to
reliably solve relatively small neural net optimization
problems. In the IJCNN paper, we had solved this
problem for small nets (e.g., up to 50 connections) by
using a distributed genetic algorithm that shares
information between subpopulations. The application
was the same, but the approach was new and the results
were new.

Second, I fail to see how it is that a report on using a
genetic algorithm to optimize small neural networks is a
genetic algorithm paper and not a neural network paper.

The bulk of de Garis’ review has more to do with his
own IJCNN paper (de Garis, 1990) and his “vision” of
merging genetic algorithms and neural networks than
with the subject of my paper. I hesitate to engage in a
diatribe, but certain issues need to be clarified.

First, I think genetic algorithms have the potential of
making a significant contribution to the field of neural
networks. Second, I also agree that merely applying
genetic algorithms to feedforward networks is not the
ultimate goal of researchers interested in merging
genetic algorithms and neural networks, but I see
nothing wrong with using this as a starting point. My co-
author and I have indicated in a recent article reviewing
the application of genetic algorithms to neural network
optimization problems (Whitley et al., in press), that the
real attraction of genetic algorithms is that they make so
few assumptions about the problem being optimized,
and thus can potentially be applied in many areas. They
have the potential to be used for optimizing recurrent
networks, networks that use other than sigmoid transfer
functions, or networks that use some form of
reinforcement learning (where the behavior of the
system is evaluated to obtain an error term for feedback)
as opposed to supervised learning. There has also been
work using genetic algorithms to define the connectivity
of neural networks (Harp et al., 1989; Miller et al., 1989;
Whitley & Bogart, 1990).

On a technical point, there is very good reason why
Ken DeJong disagrees with de Garis concerning the role
of mutation versus crossover in genetic algorithms.
Using only mutation, the strings in the population
cannot share information. Furthermore, the use of
mutation alone is inconsistent with the fundamental
theory of genetic algorithms (Holland, 1975), which
shows how reproduction and recombination (crossover)
alter the representation of hyperplane samples in the
population. It is reproduction and recombination that
allow a genetic algorithm to produce a global search of a
problem space. Without crossover, one has a fancy
stochastic hillclimber doing an unguided local search
from several different points in the search space. This
is not to say that mutation alone does not do the job;
rather, it says that the problem space is not so complex
as to require the full strength of a genetic search. We
have recently obtained very good results using a search
that also relies predominantly on mutation, for
optimizing large feedforward nets (hundreds of
connections). We also have good theoretical
explanations, however, for why the search is effective,
and in fact, we have shown why crossover can indeed
sometimes cause problems when optimizing neural
networks. The problem is that recombining strings that
directly encode the network’s weights results in the
recombination of functionally dissimilar networks. This
recombination results in a high variance in the string
evaluation, which in turn means that the genetic
algorithm is receiving inconsistent feedback about what
are good regions in the search space. Solving this
problem will clear the way for using genetic algorithms
(with crossover) to globally optimize various types of
neural networks (Whitley & Bogart, 1990). Finally, I
think a more objective, less euphoric vision of the future
than we find in de Garis’ review is needed if genetic
algorithms are to be taken seriously. Genetic algorithm
researchers need to show that they indeed have
something to offer which is tangible and effective; we
also need to demonstrate that genetic algorithms fill a
significant void in neural network research.

I do not think that this has been demonstrated yet. I
do agree that this contribution is most likely to be
associated with networks which cannot be trained using
backpropagation. But given the results that we have
obtained and the results reported by other researchers
(including de Garis), I think that one short-term
contribution may be an accumulation of data which
indicates that global genetic search is not required to
optimize these problems. This evidence coupled with
the theory of genetic algorithms suggests that simple
stochastic hillclimbing methods exist that will solve these
problems using a local search.

Darrell Whitley is at the Department of Computer Science,
Colorado State University, Fort Collins, CO 80523.

de Garis, H. (1990). Genetic programming: Modular
neural evolution for Darwin machines. Proceedings of
the International Joint Conference on Neural Networks,
I, 194-197. Hillsdale, NJ: Lawrence FErlbaum
Associates. Washington, DC, January 15-19,

Harp, S., Samad, T., & Guha, A. (1989). Towards the
genetic synthesis of neural networks. Proceedings of
the Third International Conference on Genetic
Algorithms (pp. 360-369). San Mateo, CA: Morgan
Kaufmann. George Mason University, Fairfax, VA,
June 4-7.

Holland, J. (1975). Adaptation in natural and artificial
systems. Ann Arbor, MI: University of Michigan
Press.

Miller, G., Todd, P., & Hegde, S. (1989). Designing
neural networks using genetic algorithms. Proceedings
of the Third International Conference on Genetic
Algorithms (pp. 379-384). San Mateo, CA: Morgan
Kaufmann. George Mason University, Fairfax, VA,
June 4-7.

Whitley, D., & Hanson, T. (1989). Optimizing neural
networks using faster, more accurate genetic search.
Proceedings of the Third International Conference on
Genetic Algorithms (pp. 391-396). San Mateo, CA:
Morgan Kaufmann. George Mason University,
Fairfax, VA, June 4-7.

Whitley, D., & Bogart, C. (1990). The evolution of
connectivity: Pruning neural networks using genetic
algorithms. Proceedings of the International Joint
Conference on Neural Networks, 1, 134-137. Hillsdale,
NJ: Lawrence Erlbaum Associates. Washington, DC,
January 15-19.

Whitley, D., Starkweather, T., & Bogart, C. (in press).
Genetic algorithms and neural networks: Optimizing
connections and connectivity. Parallel Computing.

